Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.23.21259321

ABSTRACT

Objectives We aimed to harness IDentif.AI 2.0, a clinically actionable AI platform to rapidly pinpoint and prioritize optimal combination therapy regimens against COVID-19. Methods A pool of starting candidate therapies was developed in collaboration with a community of infectious disease clinicians and included EIDD-1931 (metabolite of EIDD-2801), baricitinib, ebselen, selinexor, masitinib, nafamostat mesylate, telaprevir (VX-950), SN-38 (metabolite of irinotecan), imatinib mesylate, remdesivir, lopinavir, and ritonavir. Following the initial drug pool assessment, a focused, 6-drug pool was interrogated at 3 dosing levels per drug representing nearly 10,000 possible combination regimens. IDentif.AI 2.0 paired prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus (propagated, original strain, B.1.351 and B.1.617.2 variants) and Vero E6 assay with a quadratic optimization workflow. Results Within 3 weeks, IDentif.AI 2.0 realized a list of combination regimens, ranked by efficacy, for clinical go/no-go regimen recommendations. IDentif.AI 2.0 revealed EIDD-1931 to be a strong candidate upon which multiple drug combinations can be derived. Conclusions IDentif.AI 2.0 rapidly revealed promising drug combinations for clinical translation. It pinpointed dose-dependent drug synergy behavior to play a role in trial design and realizing positive treatment outcomes. IDentif.AI 2.0 represents an actionable path towards rapidly optimizing combination therapy following pandemic emergence. Graphical Abstract Highlights - When novel pathogens emerge, the immediate strategy is to repurpose drugs. - Good drugs delivered together in suboptimal combinations and doses can yield low or no efficacy, leading to misperception that the drugs are ineffective. - IDentif.AI 2.0 does not use in silico modeling or pre-existing data. - IDentif.AI 2.0 pairs optimization with prospectively acquired experimental data using a SARS-CoV-2/Vero E6 assay. - IDentif.AI 2.0 pinpoints EIDD-1931 as a foundation for optimized anti-SARS-CoV-2 combination therapies.


Subject(s)
COVID-19 , Communicable Diseases
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427729

ABSTRACT

Multiple successful vaccines against SARS-CoV-2 are urgently needed to address the ongoing Covid-19 pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein co-administered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising of polybutadiene-b-polyethylene glycol and a cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells, which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of memory CD4+ and CD8+ T cells that produce Th1 cytokines. This study is an important step towards the development of an efficacious vaccine in humans.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL